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Position paper on long and short read sequencing technologies 
 
Long read vs. short read sequencing technologies – considerations when selecting a technology 
Chain lab – Los Alamos National Laboratory 
 
Summary Statement: There are many factors that must be evaluated before ascertaining what type of 
technology is most cost effective, and/or most technically effective. In general, long read technologies 
are primarily used for in field/in situ sequencing and for closing isolate genomes, while short read 
sequencing lends itself to rapid high quality determination of strain identity and to applications that 
require high depth, such as metagenomes and counting applications, like in RNAseq.  
 
There are many considerations when establishing what sequencing technology may be used for specific 
use cases, as there are pros and cons to each technology. Cost estimates are typically shown as a 
function of a ‘run’ on the machine, number of nucleotides sequenced within a run, or number of reads 
obtained from a run. In the latest reports from the sequencing companies, the Illumina MiSeq ($99,000) 
can produce up to 15 Gigabases of data with 25 million sequencing reads in a single run [1], while the 
PacBio Sequel ($350,000) can produce up to 10 Gigabases of data with 400,000 sequencing reads [2]; 
the Nanopore MinION ($2000) can produce up to 30 Gigabases of data (but the number of sequencing 
reads is not provided) [3]. The estimated costs for sequencing rarely include the cost of the sequencer, 
maintenance costs, or the time and effort and reagent costs of sample preparation (all of which differ 
drastically among platforms), the ability to barcode or multiplex samples (loading multiple samples per 
run), the flexibility for samples (isolates vs. microbiomes, clean e.g. cultures vs. dirty e.g. air filters, low 
amount and low yield nucleic acids, RNA vs. DNA capabilities/kits), etc. Therefore, the answer for what 
technology may be most cost effective depends highly on the specific sample(s) and circumstances. 
 
Run costs and multiplexing capability are important in terms of processing single samples vs. many. The 
amount of data in terms of number of reads equates to data points, and is important when the use case 
has counting considerations (for example, more data points are better when looking at counting the 
number of transcripts in RNAseq, or when enumerating organisms from within microbiome samples). 
The amount of data in terms of total nucleotides from a run is important for estimating both 
multiplexing amount or number of runs needed given the goal and complexity and size of genome(s) 
within the sample. Cost comparisons are thus a very complex issue and are determined by the cross-
section of platform, goal of project (depth of genome coverage required), genome or metagenome 
anticipated size and/or relative abundance, etc. Below, computational algorithm/efficiency is discussed; 
however, the computational time and resources are an additional important consideration for total cost, 
yet is rarely factored into the equation. 
 
Outside of cost and the above considerations, the short (Illumina) vs. long (PacBio and Nanopore 
MinION) technologies have enormous impact on the optimal computational algorithms that should be 
used and their associated limitations/efficiencies. In general, short reads are limited to under 500 bases 
(often 100-250 bases for Illumina) and are of high quality (error rates of <<1%) [4], and with Illumina 
data, all reads are precisely the same length. In contrast, long read technologies have very high error 
rates (10-15%) [5,6] and read lengths are non-uniform. While long read technologies now provide some 
data in the >>100 kilobases (kb) range, the average read length is far smaller (10-50kb); read lengths are 
dependent on the integrity of the sample and the prep. 
 
As a general rule of thumb, in a single run, short read technologies provide much more data in terms of 
total nucleotides, and orders of magnitude more reads and thus are the only choice for counting 



applications (gene expression profiling and enumerating relative abundance of community members 
within a microbiome). Their high quality lends them well for alignment and the algorithms for this are 
very efficient in terms of speed and computational memory requirements, which is ideal in read-
mapping (alignment) applications. 
 
However, when genome assembly is desired, due to their short length and the nature of biology 
(conservation of sequences, or duplication and divergence; both within and among genomes), the 
information content within the short reads (and even in paired reads) is insufficient to resolve repetitive 
sequences whose length are longer than the reads or the sequenced insert [7,8]. This is the primary 
reason why genome assembly with short reads, despite fold coverage, does not result in finished 
genomes. Assembly of unique regions within genomes will still occur most accurately with short read 
data however. Longer reads can be utilized to help span the repetitive sequence elements and thus long 
read technologies lend themselves well to assembly applications. Where long reads fail in assembly, it is 
due to the quality of their data. This is particularly true when using only long read data for assembly. 
Some recent technologies (e.g. 10X genomics)[9] modify the library creation step for Illumina data 
processing by isolating long (10’s of kb) DNA fragments, creating barcoded libraries from these isolated 
long fragments, and allowing post-sequencing local assembly of the reads to produce long assembled 
‘reads’ representing these fragments. While these are generally expensive options, they do provide a 
high quality alternative to long-read technologies, utilizing short Illumina reads. Additional alternative 
methods, such as using Hi-C crosslinking to co-locate proximal nucleic acids coupled with advanced post-
assembly bioinformatics, can also help with assembly efforts, but again are a more expensive option 
with several pre-processing and post-processing steps [10, 11]. 
 
For isolate genomes, where all data is expected to represent a single clonal lineage with the same 
genome, clever algorithms attempt to ‘clean’ the errors from the 10-15% error rate by comparing all the 
data to itself and looking for alignments that suggest they are from the same genomic location. With 
sufficient coverage of any region in the genome, the algorithm tries to establish the ‘correct’ sequence 
at all positions (e.g. with 50-fold coverage, and a 10% error rate, one would expect approximately 5 
incorrect sequences at each position in the genome, but 45 correct sequences) [12]. In this manner, long 
read-only assemblies can achieve a very accurate and complete genome, though the accuracy does not 
match the accuracy of high quality short read assemblies. The accuracy in these long-read assemblies is 
also lower in regions where: 1) there is less coverage; 2) there is a local sequencing bias in terms of 
error; 3) in repetitive regions, since the algorithm ‘over-cleans’ and normalizes all repetitive sequences 
to the same sequence [13].  
In metagenomes (sequencing complex microbiomes), the algorithms to clean data do not achieve similar 
performance, since most organisms are not represented by high fold coverage, the organisms are not 
present in the same abundance, and conserved (repetitive) elements between different genomes can 
result in genome assembly chimeras. 

There are additional, computational considerations when dealing with long read technologies with high 
error rates. The high error rates (and types of errors – i.e., insertions/deletions) in long reads creates 
algorithmic challenges in terms of bioinformatic efficiency. These challenges result in increased 
bioinformatic processing time for read alignment and dramatically increased time and memory 
requirements for assembly. 
 
A final set of considerations for platform selection are the footprint and lab requirements for the 
instrument and associated laboratory equipment for sample and library preparation. The Oxford 



Nanopore MinION’s smartphone-like size and USB-connectivity for power and data capture have 
allowed the technology to travel to the sample, rather than samples being sent to a centralized 
laboratory. This is the only technology sufficiently small and robust to be field-deployable.  
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 Short reads (Illumina) Long reads (PacBio) Long reads (Nanopore MinION) 
Maturity of 
technology 

• Stable technology  • Stable Technology • Nascent, and rapidly advancing 
technology  

Sequencing 
process 

• Sequencing by synthesis using a 
template of DNA fragments 
from sample. Fluorophore 
signals indicate which bases are 
added in what order. 

• Sequencing by synthesis using a 
template of DNA fragments 
from sample. Fluorophore 
signals indicate which bases are 
added in what order. 

• Fragments of DNA are ratcheted 
through a nanopore 5 bases at a 
time; electrical signals are 
recorded and the bases are called 
using on the pattern of the signal. 

Error rate • Very low error rate (reported 
error rates are 0.1-2.4%) 

• Error rates ~15% (50-100X 
greater than for short reads).  

• Error rates ~15% (50-100X 
greater that for short reads). 

Error types • Primarily substitutions; some 
bias 

• Primarily random 
insertions/deletions 

• Primarily non-random 
insertions/deletions 

Read length 
(fragment size) 

• 300-600 base pairs;  
all reads equal in length 

• >300,000 base pairs;                   
average is 10,000-50,000 bp 

• >>2,000,000 base pairs;              
average is 1000-10,000 bp 

DNA / RNA • RNA must be converted to cDNA 
for sequencing 

• RNA must be converted to 
cDNA for sequencing 

• Can read both DNA and RNA 
(without converting RNA to 
cDNA). 

Lab protocols • Stable protocols • Stable protocols • Changing as technology matures 
Analytical tools • Thousands of bioinformatic 

pipelines for analysis 
• A handful of proprietary 

pipelines are the primary 
methods of analysis 

• Limited, but growing as 
technology matures 

Versions of 
sequencer 

• Production Scale: NovaSeq, 
HiSeq, NextSeq  

• Benchtop: NextSeq, MiSeq, 
MiniSeq, iSeq 

• RSII, Sequel • R9.4, R9.4 Spot-on, R9.5, RevD 
flow cells; Flongle, MinION 

• Flow cells arrayed for higher 
throughput: GridION, PromethION 

Portability • NovaSeq and HiSeq are large 
floor models; all others are 
benchtop. MiSeq, MiniSeq, and 
NextSeq are roughly the size of a 
microwave oven, while the iSeq 
is fairly small- the size of a 
toaster. 

• Both the RSII and the Sequel 
are large floor models. 

• The sequencer itself is field-
deployable (~size of an iPhone). 
The library prep equipment to 
process the sample have been 
significant; however, recent 
improvements have reduced 
these requirements. 

Base calling 
software 

• Cloud or software on-site • Software on-site • Cloud or software on-site 

Advantages • Low error rate provides much 
higher confidence in isolate 
strain characterization, 
SNP/INDEL analysis, and 
taxonomic classification from 
metagenomic samples. 

• Can utilize very low DNA input. 
• Can utilize degraded samples. 

• Longer reads mean more 
complete assemblies  with 
fewer reads since repeat 
regions are generally spanned 
by the reads. 

• Full length transcripts and 
splice variants are attainable. 

• Can detect DNA modifications. 

• Longer reads mean more 
complete assemblies  with fewer 
reads since repeat regions are 
generally spanned by the reads. 

• Full length transcripts and splice 
variants are attainable. 

• Can detect DNA modifications. 

Disadvantages • Draft assemblies are expected 
since repeat regions are not 
spanned by the reads. Some 
recent technologies can create 
synthetic long reads with short 
read sequencing platforms. 
While this is an expensive 
option, it does provide some 
solutions to the issues with 
short reads (i.e., allelic 
variations or separating 
organisms in a metagenomic 
sample). 

 

• High error rate makes some 
types of analyses more 
challenging and less reliable, 
but this is overcome by high 
throughput providing high 
depth of coverage to correct 
errors. 

• Requires high concentration of 
high-quality DNA. 

• Plasmids shorter than the 
average read length may be 
difficult to detect or assemble 
depending on data QC and 
assembly tools selected. 

• High error rate makes some 
types of analyses more 
challenging and less reliable. 

• Requires high concentration of 
high-quality DNA. 

• Inconsistencies in throughput per 
run. 

• Plasmids shorter than the 
average read length may be 
difficult to detect or assemble 
depending on data QC and 
assembly tools selected. 

• So new and rapidly changing, 
there has not been enough 
benchmarking. 



Position paper 3: RNAseq for diagnostics 
 
RNAseq and implications for diagnostics 
Chain lab – Los Alamos National Laboratory 
 
Summary statement: RNAseq can provide some important insights into the biology of active 
infections and provide advances in diagnostics approaches.  Depth of sequencing coverage is 
critical to determine gene expression profiles.  Full use of RNAseq data from both host and 
pathogen(s) for diagnostics and informed treatment options will require further investigation. 
 
RNA sequencing (RNAseq) targets the pool of transcribed nucleic acids instead of the DNA 
fraction and is most often used in targeting RNA viruses, as well as to describe gene expression 
changes/patterns in living organisms. Its use in pathogen detection and for host biomarker 
expression towards diagnostics has also been explored in limited fashion. For pathogen 
detection and/or host-response purposes, sample collection (of the correct sample type) timing 
and preparation are important considerations, together with pathogen load and potential for 
background noise. 
 
Outside of sequencing RNA viruses, one of the benefits of sequencing RNA instead of DNA is to 
identify and understand what genes and what organisms are actively expressing RNA (i.e., are 
alive and active) within the sample at a specific timepoint. For this reason, it has even been 
used by our group to identify pathogens within clinical samples, given the assumption that 
infectious pathogens are expressing a number of genes (including virulence factors) during 
disease progression. We have even recovered entire viral genomes using this approach. While 
we have shown that pathogen RNAs for DNA and RNA viruses, as well as bacterial pathogens 
can be detected in a more sensitive fashion using RNAseq compared with the same sample 
undergoing DNA sequencing, the sequences detected represent only a small, highly expressed, 
fraction of the pathogen genome (e.g. rRNA), limiting its utility of characterizing the organisms 
down below the genus or species level. 
 
Removal of non-informative RNAs (particularly rRNAs that can make up to 80% of total RNA [1], 
and for blood samples, globin mRNA [2]) is thus essential to both increase the sensitivity of this 
approach and provide a finer-scale resolution in terms of both pathogen identity and host-
pathogen response (i.e., gene expression pattern). When non-informative RNAs are depleted, 
the goal of RNAseq in diagnostics is to: 

1. establish and quantify gene expression levels for the pathogen, allowing resolution of 
within-species discrimination of invasive vs. commensal strains, and providing 
signatures of antibiotic resistance, etc. 

2. establish and quantify gene expression levels of the host in response to the invading 
pathogen (i.e., RNA biomarkers), in order to discriminate pre-symptomatic gene 
expression profiles of early infection versus later gene expression responses 

 
While pathogen detection in clinical samples will be limited in the same fashion as in traditional 
metagenomics sequence to taxonomic identity analysis (see position paper on the state of 



metagenomic sequencing), because the RNAseq approach targets expressed genes, the 
distribution of sequencing data around the target genome will be unevenly distributed and will 
provide an incorrect assessment of pathogen abundance quantification (instead, the signal 
from RNAseq should simply be interpreted as gene expression quantification).  Taxonomy 
identification will be limited by the number of genes being expressed (and later sequenced) at 
the time of sampling. Pathogens with reference genomes in the database should be readily 
identified, while novel pathogens will suffer the same issues as described in the position paper 
on the state of metagenomic sequencing. For the host however, sequences will be mapped to 
the representative genome, and gene expression quantification can be compared with gene 
expression profiles of many other pathogens in the same host (there exist a number of studies, 
particularly in human cell lines, in mice, and other animals, infected with viral and bacterial 
pathogens) [3]. These will form the basis for understanding if the host response itself is 
sufficient to be able to 1) determine if the host is infected with a pathogen, 2) what infection 
control measures may be useful to implement, 3) what treatment may be effective against the 
pathogen, 4) what the outcome may be with/without treatment, etc. This potential outcome of 
RNAseq as a diagnostic would greatly impact the current state of prophylactic treatment in 
public health and warfighter settings. 
 
Full realization of this type of RNAseq for diagnostics remains a long-term vision, as much data 
is required to be collected before such predictive analyses can be successfully made. Given 
sufficient data and examples that may account for individual host-specific unique responses, 
pathogen strain variation, differences in response based on host or environmental factors (time 
of day, temperature, male/female, what the original gut microbiome composition is/was, what 
foods were ingested prior to sampling, etc.), a machine-learning framework may be able to help 
us develop an infection ‘classifier’ that can help triage individuals both pre- and post-
symptomatically, and determine what might be best to do next. 
 
Regarding technologies, while the high error rate in long reads may affect pathogen 
identification, longer reads are able to be mapped efficiently to the host genome, and may 
provide information regarding differential gene-splicing events during infection. The primary 
drawback to long read technologies compared with short read technologies in this case, similar 
to metagenomics, is that the superior number of reads from short read technologies is of 
greater importance than read length for quantifying gene expression levels. (Also see position 
paper on long and short read sequencing technologies). 
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RNAseq for Diagnostics 
 

Advantages Disadvantages 
• Detects all active pathogens since RNA 

degrades quickly within host after 
pathogen death. 

• Only way to detect pathogenic RNA 
viruses. 

• Can provide improved sensitivity for 
detection using abundant pathogen 
transcripts, and/or host response genes. 

• Can provide quantification of functional 
gene expression levels for the pathogen 
(antibiotic resistance, virulence, etc.) 

• Can provide quantification of gene 
expression levels for the host response 
(RNA biomarkers), perhaps pre-
symptomatically. 
 

• Requires special sample prep to preserve 
RNA at sample collection since RNA is less 
stable than DNA. 

• Need to remove non-informative host 
RNA to enrich for both pathogen RNA and 
informative host RNA. 

• Need further studies of time series for 
host-pathogen interactions and gene 
expressions for both host and pathogen 
in various types of infections. 

• Need further investigation into a 
multitude of variables which affect host-
pathogen interactions (i.e., host, 
pathogen strain, and environmental 
factors) for full utilization of RNAseq. 
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